Twisted polynomials $k[x;\sigma]$ for a countable division ring $k$ with endomorphism $\sigma$ which isn't an automorphism. The twist is given by $xa=\sigma(a)x$.
Keywords twisted (skew) polynomial ring
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: $\infty$ | right: $\infty$ |
| global dimension | left: 1 | right: |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |
| Zero divisors | $\{0\}$ |