Quotient of the free algebra $\mathbb Z\langle x,y\rangle$ by the ideal $(y^2,yx)$. Attributed to Dieudonne
Keywords free algebra quotient ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $(y)$ |
Left singular ideal | $\{0\}$ |