Ring $R_{ 22 }$

$\mathbb Z\langle x,y\rangle/(y^2, yx)$

Description:

Quotient of the free algebra $\mathbb Z\langle x,y\rangle$ by the ideal $(y^2,yx)$. Attributed to Dieudonne

Keywords free algebra quotient ring

Reference(s):

  • T. Lam. A first course in noncommutative rings. (2013) @ p 21


Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
cardinality $\aleph_0$
composition length left: $\infty$right: $\infty$
Name Description
Idempotents $\{0,1\}$
Jacobson radical $(y)$
Left singular ideal $\{0\}$