- H. C. Hutchins. Examples of commutative rings. (1981) @ Example 171 p 143
- H. C. Hutchins. Examples of commutative rings. (1981) @ Example 170 p 142

Known Properties

Legend

- = has the property
- = does not have the property
- = information not in database

Name | Measure | |
---|---|---|

cardinality | $\mathfrak c$ | |

composition length | left: $\infty$ | right: $\infty$ |

global dimension | left: 1 | right: 1 |

Krull dimension (classical) | 1 | |

weak global dimension | 1 |

Name | Description |
---|---|

Idempotents | $\{0,1\}$ |

Left singular ideal | $\{0\}$ |

Left socle | $\{0\}$ |

Nilpotents | $\{0\}$ |

Right singular ideal | $\{0\}$ |

Right socle | $\{0\}$ |

Units | Elements with nonzero constant term. |

Zero divisors | $\{0\}$ |