Let $\sigma:k\to k$ be a field endomorphism of a countable field $k$ such that $\infty > n=[k:\sigma(k)]>1$. $k[x;\sigma]$ is the twisted polynomial ring where $xa:=\sigma(a)x$ for all $a$ in $k$. The ring is $k[x;\sigma]/(x^2)$.
Notes: Composition length finite but different on both sides
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: 1 | right: $n$ |
| Krull dimension (classical) | 0 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |