Let $M$ be the direct sum of $\mathbb Z/p_i\mathbb Z$ where $p_i$ is the $i$'th prime. The ring $R$ is the trivial extension $T(\mathbb Z, M)$ of $M$ by $\mathbb Z$.
Keywords trivial extension
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: $\infty$ | right: $\infty$ |
| Krull dimension (classical) | 1 |
(Nothing was retrieved.)