Let $\sigma$ be a field automorphism of infinite order of a countably infinite field $k$. Let $R$ be the skew Laurent polynomial ring $k[x,x^{-1};\sigma]$

- T.-Y. Lam. A first course in noncommutative rings. (2013) @ p 45

Symmetric properties

Asymmetric properties

Legend

- = has the property
- = does not have the property
- = information not in database

Name | Measure | |
---|---|---|

cardinality | $\aleph_0$ | |

composition length | left: $\infty$ | right: $\infty$ |

Name | Description |
---|---|

Idempotents | $\{0,1\}$ |

Jacobson radical | $\{0\}$ |

Left singular ideal | $\{0\}$ |

Left socle | $\{0\}$ |

Nilpotents | $\{0\}$ |

Right singular ideal | $\{0\}$ |

Right socle | $\{0\}$ |

Zero divisors | $\{0\}$ |