The ring direct product of infinitely many copies of the field of two elements
Notes: By Cantor's diagonal argument, the ring is uncountable.
Keywords direct product
| Name | Measure | |
|---|---|---|
| cardinality | $\mathfrak c$ | |
| composition length | left: $\infty$ | right: $\infty$ |
| Krull dimension (classical) | 0 | |
| weak global dimension | 0 |
| Name | Description |
|---|---|
| Jacobson radical | $\{0\}$ |
| Left singular ideal | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |