Let $M$ be the additive submonoid of nonnegative rationals generated by $\frac{1}{2^ip_i}$ for $i \geq 0$, where $\{p_i\mid i\in\mathbb N\}$ is an enumeration of the odd primes of $\mathbb N$. With a field $k$ and indeterminate $X$, consider the $k$ algebra $S$ generated by $\{X^m \mid m\in M\}$. The required ring is $S$ localized at the set of elements with nonzero constant term.
Keywords semigroup ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |