Let $V$ be an infinite dimensional $\mathbb Q$-vector space, and consider the trivial extension $T(\mathbb Q,V)$.
Notes: Radical has square zero.
Keywords trivial extension
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: $\infty$ | right: $\infty$ |
| Krull dimension (classical) | 0 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |