Ring $R_{ 63 }$

Finitely cogenerated, not semilocal ring

Description:

The ring is the trivial extension $T(\mathbb Z, \mathbb Z_{2^\infty})$ of the Prüfer $2$-group.

Keywords trivial extension

Reference(s):

  • T. S. Shores and R. Wiegand. Rings whose finitely generated modules are direct sums of cyclics. (1974) @ Example 3.13 p 164


Known Properties
Name
ACC annihilator
almost maximal ring
catenary
coherent
cohopfian
DCC annihilator
finitely pseudo-Frobenius
Goldie
J-0
J-1
J-2
Jacobson
rad-nil
simple-injective
stable range 1
UGP ring
universally catenary
universally Japanese
$\pi$-regular
$h$-local domain
$I_0$
ACC principal
algebraically closed field
almost Dedekind domain
almost maximal domain
almost maximal valuation ring
analytically normal
analytically unramified
Archimedean field
Artinian
atomic domain
Baer
Bezout domain
Boolean
characteristic 0 field
clean
cogenerator ring
Cohen-Macaulay
complete discrete valuation ring
complete local
continuous
Dedekind domain
discrete valuation ring
division ring
domain
dual
Euclidean domain
Euclidean field
excellent
exchange
FGC
FI-injective
field
finite
free ideal ring
Frobenius
fully prime
fully semiprime
GCD domain
Goldman domain
Gorenstein
Grothendieck
Henselian local
hereditary
Kasch
Krull domain
linearly compact
local
local complete intersection
max ring
maximal ring
maximal valuation ring
Mori domain
N-1
N-2
Nagata
Noetherian
nonsingular
normal
normal domain
ordered field
Ore domain
PCI ring
perfect
perfect field
periodic
potent
primary
prime
primitive
principal ideal domain
principal ideal ring
principally injective
Prufer domain
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-excellent
quasi-Frobenius
reduced
regular
regular local
Rickart
Schreier domain
self-injective
semi free ideal ring
semi-Artinian
semi-Noetherian
semihereditary
semilocal
semiperfect
semiprimary
semiprime
semiprimitive
semiregular
semisimple
serial
simple
simple Artinian
strongly $\pi$-regular
strongly regular
top regular
top simple
top simple Artinian
torch
unique factorization domain
uniserial domain
uniserial ring
unit regular
V ring
valuation domain
valuation ring
von Neumann regular
weakly clean
Zorn
2-primal
?-ring
Abelian
anti-automorphic
arithmetical
Armendariz
Bezout
commutative
compressible
countable
CS
Dedekind finite
directly irreducible
distributive
duo
essential socle
finite uniform dimension
finitely cogenerated
finitely generated socle
IBN
IC ring
Ikeda-Nakayama
involutive
lift/rad
McCoy
NI ring
nil radical
nilpotent radical
nonzero socle
Ore ring
orthogonally finite
polynomial identity
quasi-continuous
quasi-duo
reversible
semicommutative
simple socle
stably finite
strongly connected
symmetric
T-nilpotent radical
uniform
Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
cardinality $\aleph_0$
composition length left: $\infty$right: $\infty$
Krull dimension (classical) 1
Name Description
Idempotents $\{0,1\}$