The formal power series over $\mathbb Q$ using $x^2$ and $x^3$.
Notes: There are no prime elements. Integral closure is $\mathbb Q[[x]]$.
Keywords power series ring
Name | Measure | |
---|---|---|
cardinality | $\mathfrak c$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |