Ring $R_{ 77 }$

$\mathbb Z[\sqrt{-5}]$

Description:

$\mathbb Z[\sqrt{-5}]$

Reference(s):

  • H. C. Hutchins. Examples of commutative rings. (1981) @ Example 132 pp 120-121


Known Properties
Name
J-0
max ring
stable range 1
UGP ring
$\pi$-regular
$I_0$
?-ring
algebraically closed field
almost maximal valuation ring
analytically normal
analytically unramified
Archimedean field
Artinian
Bezout
Bezout domain
Boolean
characteristic 0 field
clean
cogenerator ring
cohopfian
complete discrete valuation ring
complete local
continuous
discrete valuation ring
division ring
dual
essential socle
Euclidean domain
Euclidean field
exchange
FGC
FI-injective
field
finite
finitely cogenerated
free ideal ring
Frobenius
fully prime
fully semiprime
GCD domain
Goldman domain
Henselian local
Kasch
linearly compact
local
local complete intersection
maximal ring
maximal valuation ring
nonzero socle
ordered field
PCI ring
perfect
perfect field
periodic
potent
primary
primitive
principal ideal domain
principal ideal ring
principally injective
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-Frobenius
regular local
Schreier domain
self-injective
semi free ideal ring
semi-Artinian
semilocal
semiperfect
semiprimary
semiregular
semisimple
serial
simple
simple Artinian
simple socle
strongly $\pi$-regular
strongly regular
top regular
top simple
top simple Artinian
torch
unique factorization domain
uniserial domain
uniserial ring
unit regular
V ring
valuation domain
valuation ring
von Neumann regular
weakly clean
Zorn
$h$-local domain
2-primal
Abelian
ACC annihilator
ACC principal
almost Dedekind domain
almost maximal domain
almost maximal ring
anti-automorphic
arithmetical
Armendariz
atomic domain
Baer
catenary
Cohen-Macaulay
coherent
commutative
compressible
countable
CS
DCC annihilator
Dedekind domain
Dedekind finite
directly irreducible
distributive
domain
duo
excellent
finite uniform dimension
finitely generated socle
finitely pseudo-Frobenius
Goldie
Gorenstein
Grothendieck
hereditary
IBN
IC ring
Ikeda-Nakayama
involutive
J-1
J-2
Jacobson
Krull domain
lift/rad
McCoy
Mori domain
N-1
N-2
Nagata
NI ring
nil radical
nilpotent radical
Noetherian
nonsingular
normal
normal domain
Ore domain
Ore ring
orthogonally finite
polynomial identity
prime
Prufer domain
quasi-continuous
quasi-duo
quasi-excellent
rad-nil
reduced
regular
reversible
Rickart
semi-Noetherian
semicommutative
semihereditary
semiprime
semiprimitive
simple-injective
stably finite
strongly connected
symmetric
T-nilpotent radical
uniform
universally catenary
universally Japanese
Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
cardinality $\aleph_0$
composition length left: $\infty$right: $\infty$
global dimension left: 1right: 1
Krull dimension (classical) 1
weak global dimension 1
Name Description
Idempotents $\{0,1\}$
Jacobson radical $\{0\}$
Left singular ideal $\{0\}$
Left socle $\{0\}$
Nilpotents $\{0\}$
Right singular ideal $\{0\}$
Right socle $\{0\}$
Zero divisors $\{0\}$