The ring quotient of the integers $\mathbb Z$ by an ideal $(p)$ where $p$ is an odd prime number.
Keywords quotient ring
Name | Measure | |
---|---|---|
cardinality | $p$ | |
composition length | left: 1 | right: 1 |
global dimension | left: 0 | right: 0 |
Krull dimension (classical) | 0 | |
uniform dimension | left: 1 | right: 1 |
weak global dimension | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $R$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $R$ |
Units | $R\setminus\{0\}$ |
Zero divisors | $\{0\}$ |