The subring of $\mathbb Q[x]$ generated by the ideal $(x)$ and the subring $\mathbb Z$.
Notes: Not 'completely integrally closed'
Keywords polynomial ring subring
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: $\infty$ | right: $\infty$ |
| Krull dimension (classical) | 2 | |
| weak global dimension | 1 |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |
| Zero divisors | $\{0\}$ |