Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Modules
(All modules are unital right modules.)
Name
% Complete
$(x + (x,y)^2)$ over the ring $F_2[x,y]/(x,y)^2$
93.8%
$(x)/(x^2)$ over the ring $\mathbb R[x]/(x^2)$
96.9%
$2$-adic integers: $\mathbb Z_2$ over the ring $2$-adic integers: $\mathbb Z_2$
96.9%
$\bigoplus_{i=0}^\infty \mathbb Q$ over the opposite ring of Michler & Villamayor's right-not-left V ring
81.3%
$\bigoplus_{i=1}^\infty \mathbb Z$ over the ring $\mathbb Z$: the ring of integers
85.9%
$\bigoplus_{i=1}^\infty \mathbb Z_{(2)}$ over the ring $\mathbb Z_{(2)}$
65.6%
$\bigoplus_{i=1}^\infty F_2$ over the ring $\prod_{i=1}^\infty F_2$
71.9%
$\mathbb Q$ over the ring $\mathbb Z$: the ring of integers
85.9%
$\mathbb Q/\mathbb Z$ over the ring $\mathbb Z$: the ring of integers
92.2%
$\mathbb Q\times \frac{\mathbb Z}{p\mathbb Z}$, where $p$ is prime over the ring $\mathbb Z$: the ring of integers
68.8%
$\mathbb Q^n$ over the ring $M_n(\mathbb Q)$
95.3%
$\mathbb R/\mathbb Z$: the circle group over the ring $\mathbb Z$: the ring of integers
57.8%
$\mathbb R[x_1,x_2,x_3,\ldots]$ over the ring $\mathbb R[x_1, x_2,x_3,\ldots]$
84.4%
$\mathbb Z$ over the ring $\mathbb Z$: the ring of integers
89.1%
$\mathbb Z\times \frac{\mathbb Z}{p\mathbb Z}$, $p$ prime over the ring $\mathbb Z$: the ring of integers
75%
$M_n(\mathbb Q)$ over the ring $M_n(\mathbb Q)$
96.9%
$T_n(F_2)$ over the ring $T_n(F_2)$
92.2%
$Z(p^\infty)$: the Prüfer $p$ group over the ring $\mathbb Z$: the ring of integers
96.9%
A 2-generated faithful torsion module over the ring $F_2[x,y]/(x,y)^2$
82.8%
Finitely cogenerated, not Artinian over the ring Finitely cogenerated, not semilocal ring
85.9%
Indecomposable, not uniform module over the ring $F_2[x,y]/(x,y)^2$
98.4%
Interval monoid ring (right regular module) over the ring Interval monoid ring
84.4%
Uniserial, not endolocal module over the ring 2-dimensional uniserial domain
60.9%