Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: co-Hopfian
Definition: Every injective endomorphism of $M_R$ is invertible.
Reference(s):
F. C. Leary. Dedekind finite objects in module categories. (1992) @ (whole article)
Metaproperties:
This property
does not
have the following metaproperties
passes to submodules (Counterexample:
$M_{ 1 }$
is a submodule of
$M_{ 6 }$
)
Modules
Name
$\bigoplus_{i=1}^\infty F_2$
$\mathbb Q\times \frac{\mathbb Z}{p\mathbb Z}$, where $p$ is prime
$\mathbb R/\mathbb Z$: the circle group
$\mathbb Z\times \frac{\mathbb Z}{p\mathbb Z}$, $p$ prime
$2$-adic integers: $\mathbb Z_2$
$\bigoplus_{i=1}^\infty \mathbb Z$
$\bigoplus_{i=1}^\infty \mathbb Z_{(2)}$
$\mathbb R[x_1,x_2,x_3,\ldots]$
$\mathbb Z$
Finitely cogenerated, not Artinian
Uniserial, not endolocal module
$(x + (x,y)^2)$
$(x)/(x^2)$
$\bigoplus_{i=0}^\infty \mathbb Q$
$\mathbb Q$
$\mathbb Q/\mathbb Z$
$\mathbb Q^n$
$M_n(\mathbb Q)$
$T_n(F_2)$
$Z(p^\infty)$: the Prüfer $p$ group
A 2-generated faithful torsion module
Indecomposable, not uniform module
Interval monoid ring (right regular module)