Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: reflexive
Definition: The canonical map of $M\to Hom(M_R,R_R)$ is a bijection.
Reference(s):
(No citations retrieved.)
Metaproperties:
This property
does not
have the following metaproperties
passes to quotients (Counterexample:
$M_{ 3 }$
is a homomorphic image of
$M_{ 16 }$
)
Modules
Name
$(x)/(x^2)$
$\bigoplus_{i=0}^\infty \mathbb Q$
$\bigoplus_{i=1}^\infty \mathbb Z_{(2)}$
$\bigoplus_{i=1}^\infty F_2$
$\mathbb Q^n$
A 2-generated faithful torsion module
$(x + (x,y)^2)$
$\mathbb Q$
$\mathbb Q\times \frac{\mathbb Z}{p\mathbb Z}$, where $p$ is prime
$\mathbb Z\times \frac{\mathbb Z}{p\mathbb Z}$, $p$ prime
$Z(p^\infty)$: the Prüfer $p$ group
Uniserial, not endolocal module
$2$-adic integers: $\mathbb Z_2$
$\bigoplus_{i=1}^\infty \mathbb Z$
$\mathbb R[x_1,x_2,x_3,\ldots]$
$\mathbb Z$
$M_n(\mathbb Q)$
$T_n(F_2)$
Finitely cogenerated, not Artinian
Indecomposable, not uniform module
Interval monoid ring (right regular module)