Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: Bezout
Definition: Every finitely generated submodule is cyclic.
Reference(s):
A. A. Tuganbaev. Semidistributive modules and rings. (2012) @ 1.14 pp 7-8
Metaproperties:
(No metaproperty information retrieved.)
Modules
Name
$\bigoplus_{i=1}^\infty \mathbb Z$
$\bigoplus_{i=1}^\infty F_2$
$\mathbb Q$
$\mathbb Q\times \frac{\mathbb Z}{p\mathbb Z}$, where $p$ is prime
$\mathbb R[x_1,x_2,x_3,\ldots]$
$\mathbb Z\times \frac{\mathbb Z}{p\mathbb Z}$, $p$ prime
$T_n(F_2)$
$\bigoplus_{i=1}^\infty \mathbb Z_{(2)}$
A 2-generated faithful torsion module
Indecomposable, not uniform module
$(x + (x,y)^2)$
$(x)/(x^2)$
$2$-adic integers: $\mathbb Z_2$
$\bigoplus_{i=0}^\infty \mathbb Q$
$\mathbb Q^n$
$\mathbb Z$
$M_n(\mathbb Q)$
$Z(p^\infty)$: the Prüfer $p$ group
Finitely cogenerated, not Artinian
Interval monoid ring (right regular module)
Uniserial, not endolocal module