Property: Dedekind finite

Definition: $M$ is Dedekind finite if $M\cong M\oplus N$ implies $N=\{0\}$. Equivalently, $End(M_R)$ is a Dedekind finite ring.

Reference(s):

  • T. Lam. Lectures on modules and rings. (2012) @ Exercise 8 pg 18

Metaproperties:

(No metaproperty information retrieved.)