The direct limit of the system using the maps $\mathbb Q^{2^n}\to \mathbb Q^{2^{n+1}}$ given by $(v_1,\ldots v_n)\mapsto (v_1,\ldots v_n,v_1,\ldots v_n)$.
Keywords direct limit direct product
| Name | Measure | |
|---|---|---|
| global dimension | left: 1 | right: 1 | 
| Krull dimension (classical) | 0 | |
| weak global dimension | 0 | 
| Name | Description | 
|---|---|
| Jacobson radical | $\{0\}$ | 
| Left singular ideal | $\{0\}$ | 
| Left socle | $\{0\}$ | 
| Nilpotents | $\{0\}$ | 
| Right singular ideal | $\{0\}$ | 
| Right socle | $\{0\}$ |