The direct limit of the system using the maps $\mathbb Q^n\to \mathbb Q^{2^n}$ given by $(v_0,\ldots v_n)\mapsto (v_1,\ldots v_n,v_1,\ldots v_n)$.

Keywords direct limit direct product

Known Properties

Legend

- = has the property
- = does not have the property
- = information not in database

Name | Measure | |
---|---|---|

global dimension | left: 1 | right: 1 |

Krull dimension (classical) | 0 | |

weak global dimension | 0 |

Name | Description |
---|---|

Jacobson radical | $\{0\}$ |

Left singular ideal | $\{0\}$ |

Left socle | $\{0\}$ |

Nilpotents | $\{0\}$ |

Right singular ideal | $\{0\}$ |

Right socle | $\{0\}$ |