Quotient of the free algebra $\mathbb Z\langle x,y\rangle$ by the ideal $(y^2,yx)$. Attributed to Dieudonne
Keywords free algebra quotient ring
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: $\infty$ | right: $\infty$ |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Jacobson radical | $(y)$ |
| Left singular ideal | $\{0\}$ |