The quotient $\mathbb Z[x]/(x^2-1)$ over the integers $\mathbb Z$.
Keywords polynomial ring quotient ring
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: $\infty$ | right: $\infty$ |
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Jacobson radical | $\{0\}$ |
| Left singular ideal | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |