The subring of $\mathbb Q[x]$ generated by the ideal $(x)$ and the subring $\mathbb Z$.
Notes: Not 'completely integrally closed'
Keywords polynomial ring subring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | 2 | |
weak global dimension | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |