Ring $R_{ 45 }$

$k[x,x^{-1};\sigma]$

Description:

Let $\sigma$ be a field automorphism of infinite order of a countably infinite field $k$. Let $R$ be the skew Laurent polynomial ring $k[x,x^{-1};\sigma]$

Keywords polynomial ring twisted (skew) polynomial ring

Reference(s):

  • T.-Y. Lam. A first course in noncommutative rings. (2013) @ p 45


Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
cardinality $\aleph_0$
composition length left: $\infty$right: $\infty$
Name Description
Idempotents $\{0,1\}$
Jacobson radical $\{0\}$
Left singular ideal $\{0\}$
Left socle $\{0\}$
Nilpotents $\{0\}$
Right singular ideal $\{0\}$
Right socle $\{0\}$
Zero divisors $\{0\}$