The polynomial ring $\mathbb Z[x]$ over the integers.
Notes: All prime ideals are $1$-or-$2$ generated, but $(3,x,y)$ is not.
Keywords polynomial ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | 2 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Jacobson radical | $\{0\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Units | $\{-1,1\}$ |
Zero divisors | $\{0\}$ |