The polynomial ring $\mathbb Z[x]$ over the integers.

Notes: All prime ideals are $1$-or-$2$ generated, but $(3,x,y)$ is not.

Keywords polynomial ring

Known Properties

Legend

- = has the property
- = does not have the property
- = information not in database

Name | Measure | |
---|---|---|

cardinality | $\aleph_0$ | |

composition length | left: $\infty$ | right: $\infty$ |

Krull dimension (classical) | 2 |

Name | Description |
---|---|

Idempotents | $\{0,1\}$ |

Jacobson radical | $\{0\}$ |

Left singular ideal | $\{0\}$ |

Left socle | $\{0\}$ |

Nilpotents | $\{0\}$ |

Right singular ideal | $\{0\}$ |

Right socle | $\{0\}$ |

Units | $\{-1,1\}$ |

Zero divisors | $\{0\}$ |