The polynomial ring in countably infinitely many variables over $\mathbb R$.
Notes: Uncountability of the base field is necessary to show it is Hilbert.
Keywords polynomial ring
Name | Measure | |
---|---|---|
cardinality | $\mathfrak c$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | $\infty$ |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |