Ring $R_{ 89 }$

$\mathbb Q[x,y]/(x^2-y^3)$

Description:

The quotient ring $\mathbb Q[x,y]/(x^2-y^3)$ .

Notes: Integral closure is $\mathbb Q[x/y]$.

Keywords polynomial ring quotient ring

Reference(s):

  • H. C. Hutchins. Examples of commutative rings. (1981) @ Example 14 p 56
  • O. Zariski and P. Samuel. Commutative algebra. (1958) @ p 262


Known Properties
Name
Cohen-Macaulay
excellent
finitely pseudo-Frobenius
Gorenstein
Grothendieck
J-0
J-1
J-2
max ring
Mori domain
quasi-excellent
stable range 1
UGP ring
universally catenary
$\pi$-regular
$I_0$
?-ring
algebraically closed field
almost Dedekind domain
almost maximal valuation ring
analytically normal
analytically unramified
Archimedean field
arithmetical
Artinian
Bezout
Bezout domain
Boolean
characteristic 0 field
clean
cogenerator ring
cohopfian
complete discrete valuation ring
complete local
continuous
Dedekind domain
discrete valuation ring
distributive
division ring
dual
essential socle
Euclidean domain
Euclidean field
exchange
FGC
FI-injective
field
finite
finitely cogenerated
free ideal ring
Frobenius
fully prime
fully semiprime
GCD domain
Goldman domain
Henselian local
hereditary
Kasch
Krull domain
linearly compact
local
local complete intersection
maximal ring
maximal valuation ring
nonzero socle
normal
normal domain
ordered field
PCI ring
perfect
perfect field
periodic
potent
primary
primitive
principal ideal domain
principal ideal ring
principally injective
Prufer domain
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-Frobenius
regular
regular local
Schreier domain
self-injective
semi free ideal ring
semi-Artinian
semihereditary
semilocal
semiperfect
semiprimary
semiregular
semisimple
serial
simple
simple Artinian
simple socle
strongly $\pi$-regular
strongly regular
top regular
top simple
top simple Artinian
torch
unique factorization domain
uniserial domain
uniserial ring
unit regular
V ring
valuation domain
valuation ring
von Neumann regular
weakly clean
Zorn
$h$-local domain
2-primal
Abelian
ACC annihilator
ACC principal
almost maximal domain
almost maximal ring
anti-automorphic
Armendariz
atomic domain
Baer
catenary
coherent
commutative
compressible
countable
CS
DCC annihilator
Dedekind finite
directly irreducible
domain
duo
finite uniform dimension
finitely generated socle
Goldie
IBN
IC ring
Ikeda-Nakayama
involutive
Jacobson
lift/rad
McCoy
N-1
N-2
Nagata
NI ring
nil radical
nilpotent radical
Noetherian
nonsingular
Ore domain
Ore ring
orthogonally finite
polynomial identity
prime
quasi-continuous
quasi-duo
rad-nil
reduced
reversible
Rickart
semi-Noetherian
semicommutative
semiprime
semiprimitive
simple-injective
stably finite
strongly connected
symmetric
T-nilpotent radical
uniform
universally Japanese
Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
cardinality $\aleph_0$
composition length left: $\infty$right: $\infty$
Krull dimension (classical) 1
Name Description
Idempotents $\{0,1\}$
Jacobson radical $\{0\}$
Left singular ideal $\{0\}$
Left socle $\{0\}$
Nilpotents $\{0\}$
Right singular ideal $\{0\}$
Right socle $\{0\}$
Zero divisors $\{0\}$