Let $S=\mathbb Q[x_1, x_2, x_3,\ldots ]$ be the polynomial ring in countably many variables. Let $I$ be the ideal generated by $\{x_i^2\mid i\in \mathbb N\}\cup\{x_ix_j\mid i, j\in \mathbb N, j\geq 2i\}$. The ring is $R=S/I$.
Keywords polynomial ring quotient ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | 0 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |