Let $\{I_i\mid i\in \mathbb N\}$ be a partition of $\mathbb N$ such that $|I_i|<|I_{i+1}|$. From $\mathbb Q[x_0, x_1,\ldots]$, consider the prime ideals $P_i=(\{x_j\mid j\in I_i\})$. The ring $R$ is the semilocalization at the intersection of the complements of the $P_i$'s.
Keywords localization polynomial ring
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
global dimension | left: $\infty$ | right: $\infty$ |
Krull dimension (classical) | $\infty$ |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |