Let $x_i$ be countably many indeterminates, and $T=\mathbb Q[\{x_i^2\mid i \in \mathbb N\}\cup\{x_i^3\in\mathbb N\}]$. Let $S_0$ be the multiplicative set that is the intersection of complements of $(x_i^2, x_i^3)$ in $\mathbb Q[\{x_i\mid i \in \mathbb N\}]$, and $S=S_0\cap T$. The desired ring is the localization $TS^{-1}$
Notes: not integrally closed in its field of fractions
Keywords localization polynomial ring
Name | Measure | |
---|---|---|
Krull dimension (classical) | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |