Let $F$ be a perfect field of characteristic $2$. The ring $R$ is the ring $\mathbb F[x,y,z]/(x^2+y^3+z^7)$ localized at $(x,y,z)$.
Keywords localization polynomial ring quotient ring
(Nothing was retrieved.)
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |
| Zero divisors | $\{0\}$ |