Let $F$ be a perfect field of characteristic $2$. The ring $R$ is the ring $\mathbb F[x,y,z]/(x^2+y^3+z^7)$ localized at $(x,y,z)$.
Keywords localization polynomial ring quotient ring
(Nothing was retrieved.)
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |