Ring $R_{ 186 }$

Base ring for $R_{187}$

Description:

Let $R=\mathbb Q[a,b,c]$ and $I=(a^2-a+bc)\lhd R$. The required ring is the subring of $\mathbb Q(a,b,c)$ with elements having numerators in $R$, and denominators in $1+I$.

Keywords localization polynomial ring ring of quotients subring

Reference(s):

  • A. J. Diesl, S. J. Dittmer, and P. P. Nielsen. Idempotent lifting and ring extensions. (2016) @ Theorem 2.1 p 2


Known Properties
Name
$h$-local domain
$I_0$
almost Dedekind domain
almost maximal domain
almost maximal ring
almost maximal valuation ring
analytically normal
analytically unramified
arithmetical
Bezout
Bezout domain
catenary
Cohen-Macaulay
complete discrete valuation ring
complete local
Dedekind domain
discrete valuation ring
distributive
Euclidean domain
excellent
exchange
FGC
finitely pseudo-Frobenius
free ideal ring
Goldman domain
Gorenstein
Grothendieck
Henselian local
hereditary
J-0
J-1
J-2
linearly compact
local
local complete intersection
maximal ring
maximal valuation ring
N-2
Nagata
potent
principal ideal domain
principal ideal ring
Prufer domain
quasi-excellent
regular
regular local
semi free ideal ring
semihereditary
semilocal
serial
stable range 1
top regular
top simple
top simple Artinian
UGP ring
uniserial domain
uniserial ring
universally catenary
universally Japanese
valuation domain
valuation ring
weakly clean
$\pi$-regular
?-ring
algebraically closed field
Archimedean field
Artinian
Boolean
characteristic 0 field
clean
cogenerator ring
cohopfian
continuous
division ring
dual
essential socle
Euclidean field
FI-injective
field
finite
finitely cogenerated
Frobenius
fully prime
fully semiprime
Jacobson
Kasch
max ring
nil radical
nilpotent radical
nonzero socle
ordered field
PCI ring
perfect
perfect field
periodic
primary
primitive
principally injective
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-Frobenius
rad-nil
self-injective
semi-Artinian
semiperfect
semiprimary
semiprimitive
semiregular
semisimple
simple
simple Artinian
simple socle
strongly $\pi$-regular
strongly regular
T-nilpotent radical
torch
unit regular
V ring
von Neumann regular
Zorn
2-primal
Abelian
ACC annihilator
ACC principal
anti-automorphic
Armendariz
atomic domain
Baer
coherent
commutative
compressible
countable
CS
DCC annihilator
Dedekind finite
directly irreducible
domain
duo
finite uniform dimension
finitely generated socle
GCD domain
Goldie
IBN
IC ring
Ikeda-Nakayama
involutive
Krull domain
lift/rad
McCoy
Mori domain
N-1
NI ring
Noetherian
nonsingular
normal
normal domain
Ore domain
Ore ring
orthogonally finite
polynomial identity
prime
quasi-continuous
quasi-duo
reduced
reversible
Rickart
Schreier domain
semi-Noetherian
semicommutative
semiprime
simple-injective
stably finite
strongly connected
symmetric
uniform
unique factorization domain
Legend
  • = has the property
  • = does not have the property
  • = information not in database

(Nothing was retrieved.)

Name Description
Idempotents $\{0,1\}$
Left singular ideal $\{0\}$
Left socle $\{0\}$
Nilpotents $\{0\}$
Right singular ideal $\{0\}$
Right socle $\{0\}$
Zero divisors $\{0\}$