The ring is the (semi)localization of the integers at the multiplicative set of numbers not divisible by either of $2$ and $3$
Notes: Exactly two maximal ideals.
Keywords localization
| Name | Measure | |
|---|---|---|
| cardinality | $\aleph_0$ | |
| composition length | left: $\infty$ | right: $\infty$ | 
| global dimension | left: 1 | right: 1 | 
| Krull dimension (classical) | 1 | |
| weak global dimension | 1 | 
| Name | Description | 
|---|---|
| Idempotents | $\{0,1\}$ | 
| Left singular ideal | $\{0\}$ | 
| Left socle | $\{0\}$ | 
| Nilpotents | $\{0\}$ | 
| Right singular ideal | $\{0\}$ | 
| Right socle | $\{0\}$ | 
| Zero divisors | $\{0\}$ |