Ring $R_{ 55 }$

$\mathbb Z_S$, where $S=((2)\cup(3))^c$

Description:

The ring is the (semi)localization of the integers at the multiplicative set of numbers not divisible by either of $2$ and $3$

Notes: Exactly two maximal ideals.

Keywords localization

Reference(s):

  • H. C. Hutchins. Examples of commutative rings. (1981) @ Example 105 p 106
  • M. Nagata. Local rings. (1962) @ pp 55-56


Known Properties
Name
Euclidean domain
J-0
$\pi$-regular
$I_0$
?-ring
algebraically closed field
almost maximal valuation ring
analytically normal
analytically unramified
Archimedean field
Artinian
Boolean
characteristic 0 field
clean
cogenerator ring
cohopfian
complete discrete valuation ring
complete local
continuous
discrete valuation ring
division ring
dual
essential socle
Euclidean field
exchange
FI-injective
field
finite
finitely cogenerated
Frobenius
fully prime
fully semiprime
Henselian local
Jacobson
Kasch
lift/rad
linearly compact
local
local complete intersection
max ring
maximal ring
maximal valuation ring
nil radical
nilpotent radical
nonzero socle
ordered field
PCI ring
perfect
perfect field
periodic
potent
primary
primitive
principally injective
pseudo-Frobenius
Pythagorean field
quadratically closed field
quasi-Frobenius
rad-nil
regular local
self-injective
semi-Artinian
semiperfect
semiprimary
semiprimitive
semiregular
semisimple
serial
simple
simple Artinian
simple socle
strongly $\pi$-regular
strongly regular
T-nilpotent radical
top simple
top simple Artinian
torch
uniserial domain
uniserial ring
unit regular
V ring
valuation domain
valuation ring
von Neumann regular
weakly clean
Zorn
$h$-local domain
2-primal
Abelian
ACC annihilator
ACC principal
almost Dedekind domain
almost maximal domain
almost maximal ring
anti-automorphic
arithmetical
Armendariz
atomic domain
Baer
Bezout
Bezout domain
catenary
Cohen-Macaulay
coherent
commutative
compressible
countable
CS
DCC annihilator
Dedekind domain
Dedekind finite
directly irreducible
distributive
domain
duo
excellent
FGC
finite uniform dimension
finitely generated socle
finitely pseudo-Frobenius
free ideal ring
GCD domain
Goldie
Goldman domain
Gorenstein
Grothendieck
hereditary
IBN
IC ring
Ikeda-Nakayama
involutive
J-1
J-2
Krull domain
McCoy
Mori domain
N-1
N-2
Nagata
NI ring
Noetherian
nonsingular
normal
normal domain
Ore domain
Ore ring
orthogonally finite
polynomial identity
prime
principal ideal domain
principal ideal ring
Prufer domain
quasi-continuous
quasi-duo
quasi-excellent
reduced
regular
reversible
Rickart
Schreier domain
semi free ideal ring
semi-Noetherian
semicommutative
semihereditary
semilocal
semiprime
simple-injective
stable range 1
stably finite
strongly connected
symmetric
top regular
UGP ring
uniform
unique factorization domain
universally catenary
universally Japanese
Legend
  • = has the property
  • = does not have the property
  • = information not in database
Name Measure
cardinality $\aleph_0$
composition length left: $\infty$right: $\infty$
global dimension left: 1right: 1
Krull dimension (classical) 1
weak global dimension 1
Name Description
Idempotents $\{0,1\}$
Left singular ideal $\{0\}$
Left socle $\{0\}$
Nilpotents $\{0\}$
Right singular ideal $\{0\}$
Right socle $\{0\}$
Zero divisors $\{0\}$