The ring is the (semi)localization of the integers at the multiplicative set of numbers not divisible by either of $2$ and $3$
Notes: Exactly two maximal ideals.
Keywords localization
Name | Measure | |
---|---|---|
cardinality | $\aleph_0$ | |
composition length | left: $\infty$ | right: $\infty$ |
global dimension | left: 1 | right: 1 |
Krull dimension (classical) | 1 | |
weak global dimension | 1 |
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |