Let $R=\mathbb Q[a,b,c]$ and $I=(a^2-a+bc)\lhd R$. The required ring is the subring of $\mathbb Q(a,b,c)$ with elements having numerators in $R$, and denominators in $1+I$.
Keywords localization polynomial ring ring of quotients subring
(Nothing was retrieved.)
| Name | Description |
|---|---|
| Idempotents | $\{0,1\}$ |
| Left singular ideal | $\{0\}$ |
| Left socle | $\{0\}$ |
| Nilpotents | $\{0\}$ |
| Right singular ideal | $\{0\}$ |
| Right socle | $\{0\}$ |
| Zero divisors | $\{0\}$ |