Let $R=\mathbb Q[a,b,c]$ and $I=(a^2-a+bc)\lhd R$. The required ring is the subring of $\mathbb Q(a,b,c)$ with elements having numerators in $R$, and denominators in $1+I$.
Keywords localization polynomial ring ring of quotients subring
(Nothing was retrieved.)
Name | Description |
---|---|
Idempotents | $\{0,1\}$ |
Left singular ideal | $\{0\}$ |
Left socle | $\{0\}$ |
Nilpotents | $\{0\}$ |
Right singular ideal | $\{0\}$ |
Right socle | $\{0\}$ |
Zero divisors | $\{0\}$ |