Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: Euclidean domain
Definition: A domain which has a Euclidean valuation
Reference(s):
N. Jacobson. Basic algebra I. (2012) @ Section 2.16
Metaproperties:
This property has the following metaproperties
passes to localizations
This property
does not
have the following metaproperties
passes to quotient rings (Counterexample:
$R_{ 49 }$
is a homomorphic image of
$R_{ 27 }$
)
passes to subrings (Counterexample:
$R_{ 6 }$
is a subring of
$R_{ 101 }$
)
stable under finite products (Counterexample:
$R_{ 9 }$
)
stable under products (counterexample needed)
forms an equational class (counterexample needed)
Rings
Name
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
DVR that is not N-2
Henselization of $\Bbb Z_{(2)}$
Nagata's normal ring that is not analytically normal
Noetherian ring that is not Grothendieck and not Nagata
non-$h$-local domain
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x]/(x^2)$
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$F_2[x,y]/(x,y)^2$
$k[[x,y]]/(x^2,xy)$
10-adic numbers
2-truncated Witt vectors over $\Bbb F_2((t))$
Akizuki's counterexample
Algebraic integers
catenary, not universally catenary
Clark's uniserial ring
Cohn's Schreier domain that isn't GCD
Countably infinite boolean ring
Custom Krull dimension valuation ring
Eventually constant sequences in $\mathbb Z$
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Grams' atomic domain which doesn't satisfy ACCP
Hochster's connected, nondomain, locally-domain ring
Interval monoid ring
Kasch not semilocal ring
Kerr's Goldie ring with non-Goldie matrix ring
McGovern's commutative Zorn ring that isn't clean
Mori but not Krull domain
Nagata ring that not quasi-excellent
Nagata's Noetherian infinite Krull dimension ring
Noetherian domain that is not N-1
Osofsky's Type I ring
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Progression free polynomial ring
Pseudo-Frobenius, not quasi-Frobenius ring
Quasi-continuous ring that is not Ikeda-Nakayama
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Ring of holomorphic functions on $\mathbb C$
Samuel's UFD having a non-UFD power series ring
Square of a torch ring
Trivial extension torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x]$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb Z$: the ring of integers
$\mathbb Z/(2)$
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z[i]$: the Gaussian integers
$^\ast \mathbb R$: the field of hyperreal numbers
$F_p(x)$
Algebraic closure of $F_2$
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Legend
= has the property
= does not have the property
= information not in database