Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: normal
Definition: Ring whose localizations at primes all are normal domains
Reference(s):
(No citations retrieved.)
Metaproperties:
This property
does not
have the following metaproperties
passes to quotient rings (Counterexample:
$R_{ 49 }$
is a homomorphic image of
$R_{ 27 }$
)
passes to subrings (Counterexample:
$R_{ 64 }$
is a subring of
$R_{ 27 }$
)
Rings
Name
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
10-adic numbers
catenary, not universally catenary
Eventually constant sequences in $\mathbb Z$
Grams' atomic domain which doesn't satisfy ACCP
Hochster's connected, nondomain, locally-domain ring
Kerr's Goldie ring with non-Goldie matrix ring
McGovern's commutative Zorn ring that isn't clean
Progression free polynomial ring
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x]/(x^2)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x]/(x^2-1)$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$F_2[x,y]/(x,y)^2$
$k[[x,y]]/(x^2,xy)$
2-truncated Witt vectors over $\Bbb F_2((t))$
Akizuki's counterexample
Clark's uniserial ring
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Interval monoid ring
Kasch not semilocal ring
Noetherian domain that is not N-1
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Pseudo-Frobenius, not quasi-Frobenius ring
Quasi-continuous ring that is not Ikeda-Nakayama
Square of a torch ring
Trivial extension torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x]$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z$: the ring of integers
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z/(2)$
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$^\ast \mathbb R$: the field of hyperreal numbers
$F_p(x)$
Algebraic closure of $F_2$
Algebraic integers
Cohn's Schreier domain that isn't GCD
Countably infinite boolean ring
Custom Krull dimension valuation ring
DVR that is not N-2
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Henselization of $\Bbb Z_{(2)}$
Mori but not Krull domain
Nagata ring that not quasi-excellent
Nagata's Noetherian infinite Krull dimension ring
Nagata's normal ring that is not analytically normal
Noetherian ring that is not Grothendieck and not Nagata
non-$h$-local domain
Osofsky's Type I ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Ring of holomorphic functions on $\mathbb C$
Samuel's UFD having a non-UFD power series ring
Legend
= has the property
= does not have the property
= information not in database