Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: analytically normal
Definition: a local ring whose completion is a normal ring
Reference(s):
(No citations retrieved.)
Metaproperties:
This property
does not
have the following metaproperties
passes to quotient rings (Counterexample:
$R_{ 49 }$
is a homomorphic image of
$R_{ 27 }$
)
passes to subrings (Counterexample:
$R_{ 6 }$
is a subring of
$R_{ 101 }$
)
Rings
Name
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$k[[x,y]]/(x^2,xy)$
Akizuki's counterexample
catenary, not universally catenary
Clark's uniserial ring
Cohn's Schreier domain that isn't GCD
Custom Krull dimension valuation ring
DVR that is not N-2
Eventually constant sequences in $\mathbb Z$
Grams' atomic domain which doesn't satisfy ACCP
Henselization of $\Bbb Z_{(2)}$
Interval monoid ring
Kerr's Goldie ring with non-Goldie matrix ring
Mori but not Krull domain
Noetherian domain that is not N-1
Noetherian ring that is not Grothendieck and not Nagata
Perfect ring that isn't semiprimary
Pseudo-Frobenius, not quasi-Frobenius ring
Samuel's UFD having a non-UFD power series ring
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x]$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x]/(x^2)$
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z$: the ring of integers
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$F_2[x,y]/(x,y)^2$
10-adic numbers
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebraic integers
Countably infinite boolean ring
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Hochster's connected, nondomain, locally-domain ring
Kasch not semilocal ring
McGovern's commutative Zorn ring that isn't clean
Nagata ring that not quasi-excellent
Nagata's Noetherian infinite Krull dimension ring
Nagata's normal ring that is not analytically normal
non-$h$-local domain
Osofsky's Type I ring
Perfect non-Artinian ring
Progression free polynomial ring
Quasi-continuous ring that is not Ikeda-Nakayama
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Ring of holomorphic functions on $\mathbb C$
Square of a torch ring
Trivial extension torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb Z/(2)$
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z_{(2)}$
$^\ast \mathbb R$: the field of hyperreal numbers
$F_p(x)$
Algebraic closure of $F_2$
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Legend
= has the property
= does not have the property
= information not in database