Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: rad-nil
Definition: $Nil(R)=J(R)$
Reference(s):
(No citations retrieved.)
Metaproperties:
This property
does not
have the following metaproperties
passes to subrings (Counterexample:
$R_{ 69 }$
is a subring of
$R_{ 2 }$
)
passes to localizations (Counterexample:
$R_{ 69 }$
is a localization of
$R_{ 1 }$
)
Rings
Name
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\widehat{\mathbb Z}$: the profinite completion of the integers
Cohn's Schreier domain that isn't GCD
Eventually constant sequences in $\mathbb Z$
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Grams' atomic domain which doesn't satisfy ACCP
Kasch not semilocal ring
Kerr's Goldie ring with non-Goldie matrix ring
Mori but not Krull domain
Nagata's Noetherian infinite Krull dimension ring
Noetherian domain that is not N-1
non-$h$-local domain
Square of a torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb Q[[X]]$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb R[[x]]$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$k[[x,y]]/(x^2,xy)$
10-adic numbers
Akizuki's counterexample
Base ring for $R_{187}$
catenary, not universally catenary
Clark's uniserial ring
Custom Krull dimension valuation ring
DVR that is not N-2
Henselization of $\Bbb Z_{(2)}$
Nagata ring that not quasi-excellent
Nagata's normal ring that is not analytically normal
Noetherian ring that is not Grothendieck and not Nagata
Osofsky's Type I ring
Pseudo-Frobenius, not quasi-Frobenius ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Samuel's UFD having a non-UFD power series ring
Trivial extension torch ring
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x]$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R$: the field of real numbers
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x]/(x^2)$
$\mathbb Z$: the ring of integers
$\mathbb Z/(2)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x]/(x^2-1)$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$^\ast \mathbb R$: the field of hyperreal numbers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$F_2[x,y]/(x,y)^2$
$F_p(x)$
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebraic closure of $F_2$
Algebraic integers
Countably infinite boolean ring
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Hochster's connected, nondomain, locally-domain ring
Interval monoid ring
McGovern's commutative Zorn ring that isn't clean
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Progression free polynomial ring
Quasi-continuous ring that is not Ikeda-Nakayama
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Ring of holomorphic functions on $\mathbb C$
Legend
= has the property
= does not have the property
= information not in database