Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: quasi-excellent
Definition: $R$ is Grothendieck and J-2
Reference(s):
(No citations retrieved.)
Metaproperties:
This property
does not
have the following metaproperties
passes to subrings (Counterexample:
$R_{ 36 }$
is a subring of
$R_{ 7 }$
)
Rings
Name
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z[x]/(x^2-1)$
$k[[x,y]]/(x^2,xy)$
10-adic numbers
Base ring for $R_{187}$
Facchini's torch ring
Henselization of $\Bbb Z_{(2)}$
Mori but not Krull domain
Nagata's Noetherian infinite Krull dimension ring
non-$h$-local domain
Samuel's UFD having a non-UFD power series ring
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
Akizuki's counterexample
Algebraic integers
Clark's uniserial ring
Cohn's Schreier domain that isn't GCD
Countably infinite boolean ring
Custom Krull dimension valuation ring
DVR that is not N-2
Eventually constant sequences in $\mathbb Z$
Finitely cogenerated, not semilocal ring
Grams' atomic domain which doesn't satisfy ACCP
Hochster's connected, nondomain, locally-domain ring
Interval monoid ring
Kasch not semilocal ring
Kerr's Goldie ring with non-Goldie matrix ring
McGovern's commutative Zorn ring that isn't clean
Nagata ring that not quasi-excellent
Nagata's normal ring that is not analytically normal
Noetherian domain that is not N-1
Noetherian ring that is not Grothendieck and not Nagata
Osofsky's Type I ring
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Progression free polynomial ring
Pseudo-Frobenius, not quasi-Frobenius ring
Quasi-continuous ring that is not Ikeda-Nakayama
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Ring of holomorphic functions on $\mathbb C$
Square of a torch ring
Trivial extension torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[[X]]$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x]$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x]/(x^2)$
$\mathbb Z$: the ring of integers
$\mathbb Z/(2)$
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$^\ast \mathbb R$: the field of hyperreal numbers
$F_2[x,y]/(x,y)^2$
$F_p(x)$
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebraic closure of $F_2$
catenary, not universally catenary
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Legend
= has the property
= does not have the property
= information not in database