Property: $h$-local domain

Definition: A commutative domain $R$ for which every nontrivial ideal is contained in finitely many maximal ideals, and every nonzero prime is contained in a unique maximal ideal

Reference(s):

  • W. Brandal. On ℎ-local integral domains. (1975) @ Whole article

Metaproperties:

This property does not have the following metaproperties
  • passes to quotient rings (Counterexample: $R_{ 49 }$ is a homomorphic image of $R_{ 27 }$)
  • passes to subrings (Counterexample: $R_{ 6 }$ is a subring of $R_{ 101 }$)
  • stable under finite products (Counterexample: $R_{ 9 }$)
  • stable under products (counterexample needed)
  • forms an equational class (counterexample needed)
  • passes to matrix rings (Counterexample: $R_{ 12 }$ is a matrix ring of $R_{ 2 }$)
  • Morita invariant (Counterexample: $R_{ 12 }$ is Morita equivalent to $R_{ 2 }$)
Rings
Name
$\mathbb Q[\mathbb Q]$
$\mathbb R[X,Y,Z]/(X^2+Y^2+Z^2-1)$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
Algebraic integers
Base ring for $R_{187}$
Cohn's Schreier domain that isn't GCD
Grams' atomic domain which doesn't satisfy ACCP
Mori but not Krull domain
Nagata's Noetherian infinite Krull dimension ring
Nagata's normal ring that is not analytically normal
Principal ideal domain that is not Nagata
Ring of holomorphic functions on $\mathbb C$
Ring of integer valued polynomials over the rationals
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x]/(x^2)$
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x]/(x^2-1)$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$F_2[x,y]/(x,y)^2$
$k[[x,y]]/(x^2,xy)$
10-adic numbers
2-truncated Witt vectors over $\Bbb F_2((t))$
Clark's uniserial ring
Countably infinite boolean ring
Eventually constant sequences in $\mathbb Z$
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Hochster's connected, nondomain, locally-domain ring
Interval monoid ring
Kasch not semilocal ring
Kerr's Goldie ring with non-Goldie matrix ring
McGovern's commutative Zorn ring that isn't clean
non-$h$-local domain
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Progression free polynomial ring
Pseudo-Frobenius, not quasi-Frobenius ring
Quasi-continuous ring that is not Ikeda-Nakayama
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Square of a torch ring
Trivial extension torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[[X]]$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x]$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb Z$: the ring of integers
$\mathbb Z/(2)$
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$^\ast \mathbb R$: the field of hyperreal numbers
$F_p(x)$
Akizuki's counterexample
Algebraic closure of $F_2$
catenary, not universally catenary
Custom Krull dimension valuation ring
DVR that is not N-2
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Henselization of $\Bbb Z_{(2)}$
Nagata ring that not quasi-excellent
Noetherian domain that is not N-1
Noetherian ring that is not Grothendieck and not Nagata
Osofsky's Type I ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Samuel's UFD having a non-UFD power series ring
Legend
  • = has the property
  • = does not have the property
  • = information not in database