Property: almost maximal domain

Definition: $R$ is an integral domain, is $h$-local, and the localization at each maximal ideal is an almost maximal valuation ring. In Brandal, Willy. "Almost maximal integral domains and finitely generated modules." Transactions of the American Mathematical Society 183 (1973): 203-222. Theorem 2.9 this is shown to be equivalent to "almost maximal ring + domain")

Reference(s):

(No citations retrieved.)

Metaproperties:

This property does not have the following metaproperties
  • passes to quotient rings (Counterexample: $R_{ 49 }$ is a homomorphic image of $R_{ 27 }$)
  • passes to subrings (Counterexample: $R_{ 36 }$ is a subring of $R_{ 7 }$)
  • stable under finite products (Counterexample: $R_{ 9 }$)
  • stable under products (counterexample needed)
  • forms an equational class (counterexample needed)
Rings
Name
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb R$: the field of real numbers
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb Z/(2)$
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$^\ast \mathbb R$: the field of hyperreal numbers
$F_p(x)$
Algebraic closure of $F_2$
Base ring for $R_{187}$
catenary, not universally catenary
Cohn's Schreier domain that isn't GCD
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Grams' atomic domain which doesn't satisfy ACCP
Kerr's Goldie ring with non-Goldie matrix ring
Mori but not Krull domain
Nagata ring that not quasi-excellent
Nagata's Noetherian infinite Krull dimension ring
Nagata's normal ring that is not analytically normal
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Ring of holomorphic functions on $\mathbb C$
Samuel's UFD having a non-UFD power series ring
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x]/(x^2)$
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x]/(x^2-1)$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$F_2[x,y]/(x,y)^2$
$k[[x,y]]/(x^2,xy)$
10-adic numbers
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebraic integers
Clark's uniserial ring
Countably infinite boolean ring
Custom Krull dimension valuation ring
Eventually constant sequences in $\mathbb Z$
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Hochster's connected, nondomain, locally-domain ring
Interval monoid ring
Kasch not semilocal ring
McGovern's commutative Zorn ring that isn't clean
non-$h$-local domain
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Progression free polynomial ring
Pseudo-Frobenius, not quasi-Frobenius ring
Quasi-continuous ring that is not Ikeda-Nakayama
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Square of a torch ring
Trivial extension torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb Q[[X]]$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x]$
$\mathbb R[[x]]$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb Z$: the ring of integers
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
Akizuki's counterexample
DVR that is not N-2
Henselization of $\Bbb Z_{(2)}$
Noetherian domain that is not N-1
Noetherian ring that is not Grothendieck and not Nagata
Osofsky's Type I ring
Legend
  • = has the property
  • = does not have the property
  • = information not in database