Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: maximal ring
Definition: $R$ is commutative and linearly compact
Reference(s):
(No citations retrieved.)
Metaproperties:
This property
does not
have the following metaproperties
passes to subrings (Counterexample:
$R_{ 6 }$
is a subring of
$R_{ 101 }$
)
Rings
Name
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$k[[x,y]]/(x^2,xy)$
10-adic numbers
Clark's uniserial ring
Cohn's Schreier domain that isn't GCD
Grams' atomic domain which doesn't satisfy ACCP
Kerr's Goldie ring with non-Goldie matrix ring
Mori but not Krull domain
Noetherian domain that is not N-1
Perfect ring that isn't semiprimary
Pseudo-Frobenius, not quasi-Frobenius ring
Quasi-continuous ring that is not Ikeda-Nakayama
Samuel's UFD having a non-UFD power series ring
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x]$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z$: the ring of integers
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
Akizuki's counterexample
Algebraic integers
catenary, not universally catenary
Countably infinite boolean ring
Custom Krull dimension valuation ring
DVR that is not N-2
Eventually constant sequences in $\mathbb Z$
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Henselization of $\Bbb Z_{(2)}$
Hochster's connected, nondomain, locally-domain ring
Interval monoid ring
Kasch not semilocal ring
McGovern's commutative Zorn ring that isn't clean
Nagata ring that not quasi-excellent
Nagata's Noetherian infinite Krull dimension ring
Nagata's normal ring that is not analytically normal
Noetherian ring that is not Grothendieck and not Nagata
non-$h$-local domain
Osofsky's Type I ring
Perfect non-Artinian ring
Progression free polynomial ring
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Ring of holomorphic functions on $\mathbb C$
Square of a torch ring
Trivial extension torch ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[[x^2,x^3]]$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x]/(x^2)$
$\mathbb Z/(2)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$^\ast \mathbb R$: the field of hyperreal numbers
$F_2[x,y]/(x,y)^2$
$F_p(x)$
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebraic closure of $F_2$
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Legend
= has the property
= does not have the property
= information not in database