Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: nilpotent radical
Definition: Has nilpotent Jacobson radical
Reference(s):
(No citations retrieved.)
Metaproperties:
This property
does not
have the following metaproperties
passes to subrings (Counterexample:
$R_{ 44 }$
is a subring of
$R_{ 15 }$
)
stable under products (Counterexample:
$R_{ 179 }$
)
forms an equational class (counterexample needed)
passes to localizations (Counterexample:
$R_{ 69 }$
is a localization of
$R_{ 1 }$
)
Rings
Name
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\widehat{\mathbb Z}$: the profinite completion of the integers
Bergman's example showing that "compressible" is not Morita invariant
Bergman's ring with IBN
Bergman's ring without IBN
Camillo and Nielsen's McCoy ring
Cohn's non-IBN domain
Cohn's right-not-left free ideal ring
Cohn's Schreier domain that isn't GCD
Eventually constant sequences in $\mathbb Z$
Facchini's torch ring
Faith-Menal counterexample
Grams' atomic domain which doesn't satisfy ACCP
Hurwitz quaternions
Kerr's Goldie ring with non-Goldie matrix ring
Left-not-right Noetherian domain
Lipschitz quaternions
Mori but not Krull domain
Nagata's Noetherian infinite Krull dimension ring
Nielsen's semicommutative ring that isn't McCoy
Noetherian domain that is not N-1
non-$h$-local domain
Page's left-not-right FPF ring
Right-not-left ACC on annihilators triangular ring
Semicommutative $R$ such that $R[x]$ is not semicommutative
Shepherdson's domain that is not stably finite
Small's right hereditary, not-left semihereditary ring
Square of a torch ring
Šter's counterexample showing "clean" is not Morita invariant
$2$-adic integers: $\mathbb Z_2$
$\mathbb Q[[X]]$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb R[[x]]$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\varinjlim T_{2^n}(\Bbb Q)$
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$k[[x,y]]/(x^2,xy)$
$T_\omega(\mathbb Q)$
10-adic numbers
2-dimensional uniserial domain
Akizuki's counterexample
Base ring for $R_{187}$
Bass's right-not-left perfect ring
catenary, not universally catenary
Clark's uniserial ring
Custom Krull dimension valuation ring
DVR that is not N-2
Grassmann algebra $\bigwedge (V)$, $\dim(V)=\aleph_0$
Henselization of $\Bbb Z_{(2)}$
Interval monoid ring
Left-not-right pseudo-Frobenius ring
Left-not-right uniserial domain
Local right-not-left Kasch ring
Nagata ring that not quasi-excellent
Nagata's normal ring that is not analytically normal
Noetherian ring that is not Grothendieck and not Nagata
Non lift/rad matrix ring over a lift/rad base ring
Nonlocal endomorphism ring of a uniserial module
Osofsky's Type I ring
Perfect ring that isn't semiprimary
Pseudo-Frobenius, not quasi-Frobenius ring
Puninski's triangular serial ring
Ram's Ore extension ring
Right-not-left simple injective ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Samuel's UFD having a non-UFD power series ring
Trivial extension torch ring
Varadarajan's left-not-right coHopfian ring
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb C$: the field of complex numbers
$\mathbb H$: Hamilton's quaternions
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q+FM_\omega(\mathbb Q)$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x]$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb Q\langle a,b\rangle/(a^2)$
$\mathbb Q\langle x, y\rangle$
$\mathbb Q\langle x,y \rangle/(xy-1)$: the Toeplitz-Jacobson algebra
$\mathbb R$: the field of real numbers
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x]/(x^2)$
$\mathbb Z$: the ring of integers
$\mathbb Z/(2)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z\langle x,y\rangle/(y^2, yx)$
$\mathbb Z\langle x_0, x_1,x_2,\ldots\rangle$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\varinjlim M_{2^n}(\mathbb Q)$
$^\ast \mathbb R$: the field of hyperreal numbers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C\ell_{2,1}(\mathbb R)$: the geometric algebra of Minkowski 3-space
$F_2[\mathcal Q_8]$
$F_2[S_4]$
$F_2[x,y]/(x,y)^2$
$F_p(x)$
$k[x,x^{-1};\sigma]$
$k[x;\sigma]/(x^2)$ (Artinian)
$k[x;\sigma]/(x^2)$ (not right Artinian)
$M_n(\mathbb Q)$
$M_n(F_2)$
$RCFM_\omega(\mathbb Q)$
$T_n(\mathbb Q)$: the upper triangular matrix ring over $\mathbb Q$
$T_n(F_2)$
$T_n(F_q)$
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebra of differential operators on the line (1st Weyl algebra)
Algebraic closure of $F_2$
Algebraic integers
Basic ring of Nakayama's QF ring
Berberian's incompressible Baer ring
Bergman's exchange ring that isn't clean
Bergman's non-unit-regular subring
Bergman's primitive finite uniform dimension ring
Bergman's right-not-left primitive ring
Bergman's unit-regular ring
Chase's left-not-right semihereditary ring
Countably infinite boolean ring
Cozzens simple, left principal, right non-Noetherian domain
Cozzens' simple V-domain
Division algebra with no anti-automorphism
Division ring with an antihomomorphism but no involution
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Finitely cogenerated, not semilocal ring
Full linear ring of a countable dimensional right vector space
Goodearl's simple self-injective operator algebra
Goodearl's simple self-injective von Neumann regular ring
Hochster's connected, nondomain, locally-domain ring
Kaplansky's right-not-left hereditary ring
Kasch not semilocal ring
Kolchin's simple V-domain
Leavitt path algebra of an infinite bouquet of circles
Malcev's nonembeddable domain
McCoy ring that is not Abelian
McGovern's commutative Zorn ring that isn't clean
Michler & Villamayor's right-not-left V ring
Nakayama's quasi-Frobenius ring that isn't Frobenius
Nielsen's right UGP, not left UGP ring
Non-Artinian simple ring
Non-symmetric $2$-primal ring
O'Meara's infinite matrix algebra
Osofsky's $32$ element ring
Perfect non-Artinian ring
Progression free polynomial ring
Quasi-continuous ring that is not Ikeda-Nakayama
Rational quaternions
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Reversible non-symmetric ring
Right-not-left Artinian triangular ring
Right-not-left coherent ring
Right-not-left Kasch ring
Right-not-left Noetherian triangular ring
Right-not-left nonsingular ring
Ring of holomorphic functions on $\mathbb C$
Simple, Noetherian ring with zero divisors and trivial idempotents
Simple, non-Artinian, von Neumann regular ring
Šter's clean ring with non-clean corner rings
Legend
= has the property
= does not have the property
= information not in database