Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: stable range 1
Definition: If $xa+b=1$, there is a $y$ such that $a+yb$ is a unit
Reference(s):
A. A. Tuganbaev. Rings close to regular. (2013) @ Chapter 6
T. Lam. A crash course on stable range, cancellation, substitution and exchange. (2004) @ .
Metaproperties:
This property has the following metaproperties
Morita invariant
passes to matrix rings
passes to $eRe$ for any full idempotent $e$
stable under products
stable under finite products
passes to $eRe$ for any idempotent $e$
This property
does not
have the following metaproperties
passes to subrings (Counterexample:
$R_{ 1 }$
is a subring of
$R_{ 2 }$
)
passes to quotient rings (Counterexample:
$R_{ 7 }$
is a homomorphic image of
$R_{ 112 }$
)
passes to polynomial rings (Counterexample:
$R_{ 7 }$
is the polynomial ring of
$R_{ 2 }$
)
Rings
Name
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb Q\langle x, y\rangle$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\mathbb Z\langle x,y\rangle/(y^2, yx)$
$\mathbb Z\langle x_0, x_1,x_2,\ldots\rangle$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$k[x,x^{-1};\sigma]$
Algebra of differential operators on the line (1st Weyl algebra)
Base ring for $R_{187}$
Bergman's example showing that "compressible" is not Morita invariant
Bergman's primitive finite uniform dimension ring
Bergman's right-not-left primitive ring
Camillo and Nielsen's McCoy ring
Cohn's right-not-left free ideal ring
Cohn's Schreier domain that isn't GCD
Cozzens simple, left principal, right non-Noetherian domain
Cozzens' simple V-domain
Eventually constant sequences in $\mathbb Z$
Facchini's torch ring
Faith-Menal counterexample
Finitely cogenerated, not semilocal ring
Grams' atomic domain which doesn't satisfy ACCP
Hurwitz quaternions
Kaplansky's right-not-left hereditary ring
Kasch not semilocal ring
Kerr's Goldie ring with non-Goldie matrix ring
Kolchin's simple V-domain
Leavitt path algebra of an infinite bouquet of circles
Left-not-right Noetherian domain
Lipschitz quaternions
McGovern's commutative Zorn ring that isn't clean
Michler & Villamayor's right-not-left V ring
Mori but not Krull domain
Nagata's Noetherian infinite Krull dimension ring
Nielsen's semicommutative ring that isn't McCoy
Noetherian domain that is not N-1
Non lift/rad matrix ring over a lift/rad base ring
non-$h$-local domain
Non-Artinian simple ring
Non-symmetric $2$-primal ring
Page's left-not-right FPF ring
Progression free polynomial ring
Ram's Ore extension ring
reduced $I_0$ ring that is not exchange
Right-not-left ACC on annihilators triangular ring
Right-not-left Noetherian triangular ring
Right-not-left nonsingular ring
Semicommutative $R$ such that $R[x]$ is not semicommutative
Simple, Noetherian ring with zero divisors and trivial idempotents
Small's right hereditary, not-left semihereditary ring
Square of a torch ring
Šter's counterexample showing "clean" is not Morita invariant
$\mathbb Q[x]$
$\mathbb Q\langle x,y \rangle/(xy-1)$: the Toeplitz-Jacobson algebra
$\mathbb Z$: the ring of integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$RCFM_\omega(\mathbb Q)$
Bergman's exchange ring that isn't clean
Bergman's non-unit-regular subring
Bergman's ring with IBN
Bergman's ring without IBN
Cohn's non-IBN domain
Full linear ring of a countable dimensional right vector space
Hochster's connected, nondomain, locally-domain ring
Malcev's nonembeddable domain
Nielsen's right UGP, not left UGP ring
O'Meara's infinite matrix algebra
Shepherdson's domain that is not stably finite
Simple, non-Artinian, von Neumann regular ring
Šter's clean ring with non-clean corner rings
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb H$: Hamilton's quaternions
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q+FM_\omega(\mathbb Q)$
$\mathbb Q[[X]]$
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb Q\langle a,b\rangle/(a^2)$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x]/(x^2)$
$\mathbb Z/(2)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim T_{2^n}(\Bbb Q)$
$\varinjlim \mathbb Q^{2^n}$
$\varinjlim M_{2^n}(\mathbb Q)$
$^\ast \mathbb R$: the field of hyperreal numbers
$C\ell_{2,1}(\mathbb R)$: the geometric algebra of Minkowski 3-space
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$F_2[\mathcal Q_8]$
$F_2[S_4]$
$F_2[x,y]/(x,y)^2$
$F_p(x)$
$k[[x,y]]/(x^2,xy)$
$k[x;\sigma]/(x^2)$ (Artinian)
$k[x;\sigma]/(x^2)$ (not right Artinian)
$M_n(\mathbb Q)$
$M_n(F_2)$
$T_\omega(\mathbb Q)$
$T_n(\mathbb Q)$: the upper triangular matrix ring over $\mathbb Q$
$T_n(F_2)$
$T_n(F_q)$
10-adic numbers
2-dimensional uniserial domain
2-truncated Witt vectors over $\Bbb F_2((t))$
Akizuki's counterexample
Algebraic closure of $F_2$
Algebraic integers
Basic ring of Nakayama's QF ring
Bass's right-not-left perfect ring
Berberian's incompressible Baer ring
Bergman's unit-regular ring
catenary, not universally catenary
Chase's left-not-right semihereditary ring
Clark's uniserial ring
Countably infinite boolean ring
Custom Krull dimension valuation ring
Division algebra with no anti-automorphism
Division ring with an antihomomorphism but no involution
DVR that is not N-2
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Goodearl's simple self-injective operator algebra
Goodearl's simple self-injective von Neumann regular ring
Grassmann algebra $\bigwedge (V)$, $\dim(V)=\aleph_0$
Henselization of $\Bbb Z_{(2)}$
Interval monoid ring
Left-not-right pseudo-Frobenius ring
Left-not-right uniserial domain
Local right-not-left Kasch ring
McCoy ring that is not Abelian
Nagata ring that not quasi-excellent
Nagata's normal ring that is not analytically normal
Nakayama's quasi-Frobenius ring that isn't Frobenius
Noetherian ring that is not Grothendieck and not Nagata
Nonlocal endomorphism ring of a uniserial module
Osofsky's $32$ element ring
Osofsky's Type I ring
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Pseudo-Frobenius, not quasi-Frobenius ring
Puninski's triangular serial ring
Quasi-continuous ring that is not Ikeda-Nakayama
Rational quaternions
reduced exchange ring which is not semiregular
Reversible non-symmetric ring
Right-not-left Artinian triangular ring
Right-not-left coherent ring
Right-not-left Kasch ring
Right-not-left simple injective ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Ring of holomorphic functions on $\mathbb C$
Samuel's UFD having a non-UFD power series ring
Trivial extension torch ring
Varadarajan's left-not-right coHopfian ring
Legend
= has the property
= does not have the property
= information not in database