Property: top simple

Definition: $R/J(R)$ simple

Reference(s):

(No citations retrieved.)

Metaproperties:

This property does not have the following metaproperties
Rings
Name
Basic ring of Nakayama's QF ring
Bergman's example showing that "compressible" is not Morita invariant
Bergman's exchange ring that isn't clean
Bergman's non-unit-regular subring
Bergman's primitive finite uniform dimension ring
Bergman's ring with IBN
Bergman's ring without IBN
Bergman's unit-regular ring
Camillo and Nielsen's McCoy ring
Cohn's non-IBN domain
Cohn's right-not-left free ideal ring
Cohn's Schreier domain that isn't GCD
Eventually constant sequences in $\mathbb Z$
Faith-Menal counterexample
Grams' atomic domain which doesn't satisfy ACCP
Hurwitz quaternions
Kaplansky's right-not-left hereditary ring
Kerr's Goldie ring with non-Goldie matrix ring
Left-not-right Noetherian domain
Left-not-right pseudo-Frobenius ring
Lipschitz quaternions
Michler & Villamayor's right-not-left V ring
Mori but not Krull domain
Nielsen's semicommutative ring that isn't McCoy
Noetherian domain that is not N-1
Non-symmetric $2$-primal ring
Nonlocal endomorphism ring of a uniserial module
O'Meara's infinite matrix algebra
Page's left-not-right FPF ring
Puninski's triangular serial ring
Ram's Ore extension ring
Right-not-left ACC on annihilators triangular ring
Semicommutative $R$ such that $R[x]$ is not semicommutative
Shepherdson's domain that is not stably finite
Small's right hereditary, not-left semihereditary ring
Šter's clean ring with non-clean corner rings
Šter's counterexample showing "clean" is not Morita invariant
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q+FM_\omega(\mathbb Q)$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[x]$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb Q\langle a,b\rangle/(a^2)$
$\mathbb Q\langle x, y\rangle$
$\mathbb Q\langle x,y \rangle/(xy-1)$: the Toeplitz-Jacobson algebra
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z$: the ring of integers
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z[x]$
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$\mathbb Z\langle x,y\rangle/(y^2, yx)$
$\mathbb Z\langle x_0, x_1,x_2,\ldots\rangle$
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\prod_{i=1}^\infty F_2$
$\varinjlim T_{2^n}(\Bbb Q)$
$\varinjlim \mathbb Q^{2^n}$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C\ell_{2,1}(\mathbb R)$: the geometric algebra of Minkowski 3-space
$F_2[S_4]$
$RCFM_\omega(\mathbb Q)$
$T_\omega(\mathbb Q)$
$T_n(\mathbb Q)$: the upper triangular matrix ring over $\mathbb Q$
$T_n(F_2)$
$T_n(F_q)$
10-adic numbers
Algebraic integers
Berberian's incompressible Baer ring
Bergman's right-not-left primitive ring
Chase's left-not-right semihereditary ring
Countably infinite boolean ring
Facchini's torch ring
Finitely cogenerated, not semilocal ring
Full linear ring of a countable dimensional right vector space
Hochster's connected, nondomain, locally-domain ring
Kasch not semilocal ring
Malcev's nonembeddable domain
McGovern's commutative Zorn ring that isn't clean
Nagata's Noetherian infinite Krull dimension ring
Nakayama's quasi-Frobenius ring that isn't Frobenius
Nielsen's right UGP, not left UGP ring
non-$h$-local domain
Osofsky's $32$ element ring
Osofsky's Type I ring
Progression free polynomial ring
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Right-not-left Artinian triangular ring
Right-not-left Kasch ring
Right-not-left Noetherian triangular ring
Right-not-left nonsingular ring
Ring of holomorphic functions on $\mathbb C$
Square of a torch ring
Trivial extension torch ring
Varadarajan's left-not-right coHopfian ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb H$: Hamilton's quaternions
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x]/(x^2)$
$\mathbb Z/(2)$
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z_{(2)}$
$\varinjlim M_{2^n}(\mathbb Q)$
$^\ast \mathbb R$: the field of hyperreal numbers
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$F_2[\mathcal Q_8]$
$F_2[x,y]/(x,y)^2$
$F_p(x)$
$k[[x,y]]/(x^2,xy)$
$k[x,x^{-1};\sigma]$
$k[x;\sigma]/(x^2)$ (Artinian)
$k[x;\sigma]/(x^2)$ (not right Artinian)
$M_n(\mathbb Q)$
$M_n(F_2)$
2-dimensional uniserial domain
2-truncated Witt vectors over $\Bbb F_2((t))$
Akizuki's counterexample
Algebra of differential operators on the line (1st Weyl algebra)
Algebraic closure of $F_2$
Bass's right-not-left perfect ring
catenary, not universally catenary
Clark's uniserial ring
Cozzens simple, left principal, right non-Noetherian domain
Cozzens' simple V-domain
Custom Krull dimension valuation ring
Division algebra with no anti-automorphism
Division ring with an antihomomorphism but no involution
DVR that is not N-2
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Goodearl's simple self-injective operator algebra
Goodearl's simple self-injective von Neumann regular ring
Grassmann algebra $\bigwedge (V)$, $\dim(V)=\aleph_0$
Henselization of $\Bbb Z_{(2)}$
Interval monoid ring
Kolchin's simple V-domain
Leavitt path algebra of an infinite bouquet of circles
Left-not-right uniserial domain
Local right-not-left Kasch ring
Nagata ring that not quasi-excellent
Nagata's normal ring that is not analytically normal
Noetherian ring that is not Grothendieck and not Nagata
Non-Artinian simple ring
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Pseudo-Frobenius, not quasi-Frobenius ring
Quasi-continuous ring that is not Ikeda-Nakayama
Rational quaternions
Reversible non-symmetric ring
Right-not-left coherent ring
Right-not-left simple injective ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Samuel's UFD having a non-UFD power series ring
Simple, Noetherian ring with zero divisors and trivial idempotents
Simple, non-Artinian, von Neumann regular ring
Legend
  • = has the property
  • = does not have the property
  • = information not in database