Database of Ring Theory
Toggle navigation
Rings
Browse all rings
Search all rings
Browse commutative rings
Search commutative rings
Browse ring properties
Browse commutative ring properties
Search rings by keyword
Browse rings by dimension
Modules
Browse all modules
Search all modules
Browse module properties
Theorems
Citations
Contribute
Learn
FAQ
Login
Profile
Property: (right/left) Bezout
Definition: (right Bezout) Finitely generated right ideals are cyclic
Reference(s):
A. A. Tuganbaev. Semidistributive modules and rings. (2012) @ Chapter 3
Metaproperties:
This property has the following metaproperties
stable under finite products
stable under products
forms an equational class
passes to matrix rings
This property
does not
have the following metaproperties
passes to quotient rings (Counterexample:
$R_{ 1 }$
)
passes to subrings (Counterexample:
$R_{ 6 }$
is a subring of
$R_{ 101 }$
)
Rings
left
Name
right
$\mathbb A_\mathbb Q$: the ring of adeles of $\mathbb Q$
$\mathbb Q[x^{1/2},x^{1/4},x^{1/8},...]/(x)$
$\mathbb Q\langle a,b\rangle/(a^2)$
$\mathbb Q\langle x, y\rangle$
$\mathbb Q\langle x,y \rangle/(xy-1)$: the Toeplitz-Jacobson algebra
$\mathbb Z[x]/(x^2-1)$
$\mathbb Z\langle x,y\rangle/(y^2, yx)$
$\mathbb Z\langle x_0, x_1,x_2,\ldots\rangle$
$\prod_{i=1}^\infty \mathbb Q[[X,Y]]$
$\prod_{i=1}^\infty \mathbb Z/(2^i)$
$\varinjlim T_{2^n}(\Bbb Q)$
$C([0,1])$, the ring of continuous real-valued functions on the unit interval
$C^\infty_0(\mathbb R)$: the ring of germs of smooth functions on $\mathbb R$ at $0$
$k[[x,y]]/(x^2,xy)$
$k[x,x^{-1};\sigma]$
$RCFM_\omega(\mathbb Q)$
$T_\omega(\mathbb Q)$
Algebra of differential operators on the line (1st Weyl algebra)
Base ring for $R_{187}$
Basic ring of Nakayama's QF ring
Berberian's incompressible Baer ring
Bergman's example showing that "compressible" is not Morita invariant
Bergman's primitive finite uniform dimension ring
Bergman's right-not-left primitive ring
Bergman's ring with IBN
Bergman's ring without IBN
Camillo and Nielsen's McCoy ring
Chase's left-not-right semihereditary ring
Cozzens simple, left principal, right non-Noetherian domain
Eventually constant sequences in $\mathbb Z$
Faith-Menal counterexample
Grassmann algebra $\bigwedge (V)$, $\dim(V)=\aleph_0$
Hochster's connected, nondomain, locally-domain ring
Kasch not semilocal ring
Kerr's Goldie ring with non-Goldie matrix ring
Leavitt path algebra of an infinite bouquet of circles
Left-not-right pseudo-Frobenius ring
McCoy ring that is not Abelian
McGovern's commutative Zorn ring that isn't clean
Nagata's normal ring that is not analytically normal
Nakayama's quasi-Frobenius ring that isn't Frobenius
Nielsen's right UGP, not left UGP ring
Nielsen's semicommutative ring that isn't McCoy
Non lift/rad matrix ring over a lift/rad base ring
Non-Artinian simple ring
Non-symmetric $2$-primal ring
O'Meara's infinite matrix algebra
Page's left-not-right FPF ring
Progression free polynomial ring
Pseudo-Frobenius, not quasi-Frobenius ring
Puninski's triangular serial ring
reduced $I_0$ ring that is not exchange
reduced exchange ring which is not semiregular
Right-not-left ACC on annihilators triangular ring
Right-not-left Kasch ring
Semicommutative $R$ such that $R[x]$ is not semicommutative
Simple, Noetherian ring with zero divisors and trivial idempotents
Small's right hereditary, not-left semihereditary ring
Šter's counterexample showing "clean" is not Morita invariant
$\mathbb Q[[x^2,x^3]]$
$\mathbb Q[x,y,z]/(xz,yz)$
$\mathbb Q[x,y]/(x^2, xy)$
$\mathbb Q[x,y]/(x^2-y^3)$
$\mathbb Q[X,Y]_{(X,Y)}$
$\mathbb Q[x,y]_{(x,y)}/(x^2-y^3)$
$\mathbb Q[x_1, x_2,\ldots, x_n]$
$\mathbb R[x,y,z]/(x^2,y^2, xz,yz,z^2-xy)$
$\mathbb R[x,y]$ completed $I$-adically with $I=(x^2+y^2-1)$
$\mathbb R[x,y]/(x^2+y^2-1)$: ring of trigonometric functions
$\mathbb R[x_1, x_2,x_3,\ldots]$
$\mathbb Z[\sqrt{-5}]$
$\mathbb Z[x]$
$\mathbb Z[X]/(X^2,4X, 8)$
$\mathbb Z[X]/(X^2,8)$
$\mathbb Z[x_0, x_1,x_2,\ldots]$
$F_2[\mathcal Q_8]$
$F_2[S_4]$
$F_2[x,y]/(x,y)^2$
$k[x;\sigma]/(x^2)$ (Artinian)
$k[x;\sigma]/(x^2)$ (not right Artinian)
$T_n(\mathbb Q)$: the upper triangular matrix ring over $\mathbb Q$
$T_n(F_2)$
$T_n(F_q)$
Akizuki's counterexample
Bass's right-not-left perfect ring
catenary, not universally catenary
Cohn's non-IBN domain
Cohn's Schreier domain that isn't GCD
Grams' atomic domain which doesn't satisfy ACCP
Left-not-right Noetherian domain
Left-not-right uniserial domain
Lipschitz quaternions
Local right-not-left Kasch ring
Malcev's nonembeddable domain
Mori but not Krull domain
Nagata ring that not quasi-excellent
Nagata's Noetherian infinite Krull dimension ring
Noetherian domain that is not N-1
Osofsky's $32$ element ring
Perfect non-Artinian ring
Perfect ring that isn't semiprimary
Quasi-continuous ring that is not Ikeda-Nakayama
Ram's Ore extension ring
Reversible non-symmetric ring
Right-not-left Artinian triangular ring
Right-not-left Noetherian triangular ring
Right-not-left nonsingular ring
Right-not-left simple injective ring
ring of germs of holomorphic functions on $\mathbb C^n$, $n>1$
Samuel's UFD having a non-UFD power series ring
Shepherdson's domain that is not stably finite
Varadarajan's left-not-right coHopfian ring
$2$-adic integers: $\mathbb Z_2$
$\mathbb C$: the field of complex numbers
$\mathbb H$: Hamilton's quaternions
$\mathbb Q$: the field of rational numbers
$\mathbb Q(x)$: rational functions over the rational numbers
$\mathbb Q+FM_\omega(\mathbb Q)$
$\mathbb Q[[X]]$
$\mathbb Q[\mathbb Q]$
$\mathbb Q[x,x^{-1}]$: Laurent polynomials
$\mathbb Q[x]$
$\mathbb R$: the field of real numbers
$\mathbb R[[x]]$
$\mathbb R[x]/(x^2)$
$\mathbb Z$: the ring of integers
$\mathbb Z+x\mathbb Q[x]$
$\mathbb Z/(2)$
$\mathbb Z/(n)$, $n$ divisible by two primes and a square
$\mathbb Z/(n)$, $n$ squarefree and not prime
$\mathbb Z/(p)$, $p$ an odd prime
$\mathbb Z/(p^k)$, $p$ a prime, $k>1$
$\mathbb Z[\frac{1+\sqrt{-19}}{2}]$
$\mathbb Z[i]$: the Gaussian integers
$\mathbb Z_S$, where $S=((2)\cup(3))^c$
$\mathbb Z_{(2)}$
$\prod_{i=0}^\infty \mathbb Q$
$\prod_{i=1}^\infty F_2$
$\varinjlim \mathbb Q^{2^n}$
$\varinjlim M_{2^n}(\mathbb Q)$
$\widehat{\mathbb Z}$: the profinite completion of the integers
$^\ast \mathbb R$: the field of hyperreal numbers
$C\ell_{2,1}(\mathbb R)$: the geometric algebra of Minkowski 3-space
$F_p(x)$
$M_n(\mathbb Q)$
$M_n(F_2)$
10-adic numbers
2-dimensional uniserial domain
2-truncated Witt vectors over $\Bbb F_2((t))$
Algebraic closure of $F_2$
Algebraic integers
Bergman's exchange ring that isn't clean
Bergman's non-unit-regular subring
Bergman's unit-regular ring
Clark's uniserial ring
Cohn's right-not-left free ideal ring
Countably infinite boolean ring
Cozzens' simple V-domain
Custom Krull dimension valuation ring
Division algebra with no anti-automorphism
Division ring with an antihomomorphism but no involution
DVR that is not N-2
Facchini's torch ring
field of $2$-adic numbers
Field of algebraic numbers
Field of constructible numbers
Finitely cogenerated, not semilocal ring
Full linear ring of a countable dimensional right vector space
Goodearl's simple self-injective operator algebra
Goodearl's simple self-injective von Neumann regular ring
Henselization of $\Bbb Z_{(2)}$
Hurwitz quaternions
Interval monoid ring
Kaplansky's right-not-left hereditary ring
Kolchin's simple V-domain
Michler & Villamayor's right-not-left V ring
Noetherian ring that is not Grothendieck and not Nagata
non-$h$-local domain
Nonlocal endomorphism ring of a uniserial module
Osofsky's Type I ring
Rational quaternions
Right-not-left coherent ring
Ring of holomorphic functions on $\mathbb C$
Simple, non-Artinian, von Neumann regular ring
Square of a torch ring
Trivial extension torch ring
Šter's clean ring with non-clean corner rings
Legend
= has the property
= does not have the property
= information not in database